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A B S T R A C T  

Let A be an abelian variety defined over a number field K. Let L be 
a finite Galois extension of K with Galois group G and let I]I(A/K) 
and ]]I(A/L) denote, respectively, the Tate-Shafarevich groups of A over 
K and of A over L. Assuming these groups are finite, we compute 
[III(A/L)G]/[III(A/K)] and [m(A/K)]/[N(I]I(A/L))], where IX] is the or- 
der of a finite abelian group X. Especially, when L is a quadratic exten- 
sion of K, we derive a simple formula relating [I]](A/L)], [m(A/K)], and 
[I-fl(AX/K)] where A x is the twist of A by the non-trivial character X of 
G. 

1. I n t r o d u c t i o n  

Let L / K  be a finite Galois extension of number  fields with Galois group G. 

Write K ,  GK,  MK, h v  for the  algebraic closure of  K ,  Gal(K/K) ,  a complete  

set of  places on K ,  the complet ion of K at the place v E MK, respectively. Fix 

a place VL E ML lying above v for each v E MK. Denote  Gal(Lw/K~) by G~ 

for w E ML. 

Let A be an abelian variety defined over K .  The  conjecture of Birch and 

Swinner ton-Dyer  predicts the leading coefficient of the Taylor expansion for 

the L-funct ion L ( A / K , s )  a t tached  to A / K  at s = 1. Denote  by B S D ( A / K )  

the conjectured leading coefficient, which is defined by the p roduc t  of several 

algebraic invariants including the order  of  the Ta te -Shafarev ich  group (see [7] 

or  [18]). The constant  B S D ( A / K )  is an isogeny invariant (see [18, Theorem 

2.1]). 
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Assume L is a quadratic extension and A x denotes the quadratic twist by 

the non-trivial character X of G. Milne [7] showed that  if the Tate-Shafarevich 

groups are finite, 

BSD(A/L)  = B S D ( A / K )  . BSD(AX /K).  

Let III(A/K) and III(A/L) denote the Tate-Shafarevich groups of A over K 

and of A over L, respectively. We assume throughout that  these groups are 

finite. We write [X] for the order of a finite abelian group X. Note that  the 

Tate-Shafarevich group is not an isogeny invariant and, in general, 

[Ill(AlL)] ¢ [III(A/K)][HI(A~/K)]. 

On the difference there are partial results in [5, Corollary 4.6], [7, Corollary to 

Theorem 3] and [9, Theorem 4.8]. In this paper we derive a simple formula 

relating the orders of III(A/L), III(A/K) and III(AX/K). 

MAIN THEOREM: Assume that the Tate Shafarevich groups are finite. Let A' 
be the dual variety of A. Then 

[III(A/K)][III(AX /K)] _ [H°(G, A'(L))][H 1 (G, A(L))] 

[HI(A/L)] YIvEMK [ H1 (GvL, A(LvL))] ' 

w h e r e  VL is the fixed place of L lying above v for each v 6 MA-. 

Proof: It is obvious from Theorem 6 and Lemma 13. | 

Because H I (GvL, A(Lv~)) = 0 except for a finite number of places, the infinite 

product YIveMK[HI(GvL,A(LvL))] is well-defined (see [5, Lemma 2.3]). Note 

that  in the above theorem both sides are a power of 2. 

In this study we assume that  L / K  is a finite Galois extension of number fields 

but we limit L / K  to a quadratic extension in the latter half of section 4. 

2. T a t e - S h a f a r e v i c h  g r o u p s  over  Galois  ex t ens ions  

Denote the restriction map in the Inflation-Restriction sequence by resA: 

HI(K,A)  --~ HI(L,A)  c. We have a natural commutative diagram (see [14, 

p. 296 and p. 335]): 

(1) 
HI(G,A(L)) ~ Ha(K,A ) resa > reSA(HI(K,A))__+ 0 

0-+ (~ HI(GvL,A(LvL)) > (~ HI(Kv,A)  • (~ HI(LvL,A), 
vCMK VEMK vEMK 
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where VL is the fixed place of L lying above v for each v E MK. 
Let trans: Hi(L,  A) G -~ H2(G,A(L)) be the T ransg re s s ion  map (see sec- 

tion 4 for the definition). Denote by 27 the map Coker(5 r )  -+ Coker(G) in- 

duced from the above diagram. From [6, Theorem 2] we get Ker(trans) = 
resA(H 1 (K, A)). Therefore, 

Ker(7/) = m(A/L)  ~ N resA (H 1 (K, A)) = III(A/L) c n Ker(trans). 

Note that Ker(~) = III(A/K). Then the Kernel-Cokernel sequence of dia- 

gram (1) becomes the following sequence: 

0 > Ker(J-) ) m ( A / K )  > I l l (AlL)aN Ker(trans) 
(2) 

> Coker(.T) > Z(Coker(Sr)) ) 0. 

h 

For a topological abelian group M, let M be the completion of M with respect 

to the topology defined by the subgroups of finite index. Write M* for the group 

of continuous characters of finite order of M, i.e. M* = Homcts(M, Q/Z) .  

THEOREM 1 (Global Duality Theorem): Assume that III(A/K) is finite. Then 

there is an exact sequence: 
A $  

0 -+ III(A/K) --+ HI (K,A)  --+ ( ~  HI(Kv,A)  ~ A'(K) --+ 0, 
V E M K  

where A' is the dual variety of A. 

Proo~ See [1, Corollary 1], [3, Theorem 1.1] or [8, 1.6.14(b)]. | 

THEOREM 2 (Local Duality Theorem): For a place v E MK there exists a 

bilinear, non-degenerate pairing 

( ,  }: H°(Kv ,A  ') x HI(Kv,A)  > Q/Z .  

Proof: See [16, p. 156-04], [17, p. 289] and [8, 1.3.4 and 1.3.7]. | 

Here H°(Kv, A r) = A~(K~) unless v is archimedian, in which case it equals the 

quotient of A'(Kv) by its identity component (see [17, p. 289]). 

LEMMA 3: The dual of the exact sequence 

0 -+ Hi(GvL,A(LvL)) -+ HI(Kv,A)  -+ HI(LvL,A) 

is the exact sequence 

0 +- ~I°(GvL,A'(LvL)) +- H°(Kv,A')(  N H°(LvL,A'), 
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where the map N is the norm map (the map tr in [16, p. 156-04]). 

Proof: It is obvious from the local duality theorem and [16, (12) on p. 156-04]. 
For the archimedian primes, see [8, 1.3.7]. | 

LEMMA 4: Suppose that M is a finite abelian group and that M t is an abelian 

group. Let f: M ~ M ~ be a group homomorphism and let Horn(f,.): 
Hom(M', Q/Z)  -+ Hom(M, Q/Z)  be the dual o f f .  Then [image of Hom(f, .)] 

= [image of f]. 

Proof'. It is obvious. | 

LEMMA 5: Let f~: H°(G,A'(L)) -~ YI~cM~ ~I°(Gv~,A'(L~L)) • Then 

[Z(Coker($'))] = [H°(G, A'(L))/Ker(hr~)]. 

Proo[: From diagram (1) there is the following commutative diagram: 

(3) (~veMn HI(GvL'A(LvL)) ) ( ~ M K  HI(KÈ'A) 

 ul ectivel l 
Coker(gr ) z > Coker(G). 

From Lemma 3 and [8, 1.6.14(b)], the dual of a composition map in the above 
diagram, 

(4) ( ~  HI(G~L,A(L~L)) ~ ( ~  HI(Kv,A)  --+ Coker(G), 
vCMK vEMK 

is the composition map 

(5) I I  ~I°(G~L,A'(LvL)) +- H H°(Kv'A')  +- A'(K-~). 
vEMK VEMK 

Now diagram (3) implies [Z(Coker(gr))] = [image of the map (4)] and Lemma 4 
implies [image of the map (4)] = [image of the map (5)]. From the following 
natural commutative diagram: 

, < H (Kv,A') YIvEMK ~IO(CvL A'(LvL)) YIvEMK 0 " 

T 
A fI°(a,A'(L))  (   rje¢  vo A'(K), 
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[image of the map (5)] = [image of ~ ]  = [H°(G, A'(L))/Ker(br~)]. Then the 

lemma follows. | 

THEOREM 6: Assume that III(A/L) is finite. Then 

[III(A/L)a]- [trans(IlI(A/L)G)][Ker(jF°)] H [HI(GvL A(LvL))]. 
JIll(A/K)] [~r° (G, A'(L))][H ~ (G, A(L))] v E M K  ' 

Proof: Prom the map )c in diagram (1), we have 

[Coker(~)] _ [(~ H 1 (G~, A(L~L))] 
[Ker (~-)] [H 1 (G, A(L))] 

Then from the sequence (2) and Lemma 5, the theorem is immediate. 

COROLLARY 7 (Generalization of Main Theorem in [5]): Suppose that 
I:I°(G, A'(L)) = H2(G, A(L)) = O. Then 

[III(A/L) c] _ 1-I~eM~ [ H1 (G.L, A(L~L))] 
[nI(A/K)] [H I(G, A(L))] 

Proo~ It is obvious from the previous theorem because Ker(gC~) C 
_~°(G, A'(L)) and because trans(lll(A/L) G) C H2(G, A(L)). | 

3. Cassels  pairing 

When III(A/K) is finite, there is a canonical pairing 

III(A/K) x III(A'/K) ---+ O/Z, 

which is non-degenerate. This pairing will be called Cassels pairing. For details, 

see [4], [17, p. 292] and [8, pp. 96-99]. The following is one definition of Cassels 
pairing in [8, pp. 96-97], which is called "The Weil pairing definition" in [10, 

12.2]. 

For an abelian group M, let Mm denote the kernel of multiplication by re on 

M with an integer m. Pick a positive integer re which is a multiple of [Ill(A/K)]. 
Let a E III(A/K) and a' E Il i(X/K).  Choose elements b and b' of HI(K, Am) 
and H 1 (K, Arm) mapping to a and a r respectively. For each v E MK, a maps to 

zero in HI(Kv, A), and from the diagram 

A(Kv) > HI(Kv,Am) > HI(K~,A) 

T 
A(Kv) . HI(K ,Am ) 
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we can lift by to an element by,1 • Hi(K,,, Am2) that is in the image of A(Kv). 

Let/9 be a cocycle representing b, and choose a cochain/91 • CI(K, Am 2) such 

that m/91 = ft. Choose a cocycle/9~,1 • ZI(Kv,Am2) representing by,l, and a 

cocycle/9' • ZI(K, A'm) representing b'. The coboundary d/91 of/91 takes values 

in Am, and d/91 U/9' represents an element of H a ( K , K  ×) : 0. So d/91 U/9' : de 

for some 2-cochain e • C2 (K ,K×) .  Now (/91,v -/9v,1) U/3" - ev is a 2-cocycle, 

and we define 

(a,a') : E inv~((/gl,~ -/9.,1)U/9'v - e v )  • Q /Z .  
vEMK 

Remember that the cup-product is induced by the Weil pairing 

era: x A "  -+  , 

and invv is the canonical map H 2 (Kv, ~ ×  ) - : + Q / Z .  

Let ( - , - -}K:  m(A/K)  z I]I(A'/K) --+ Q / Z  be the Cassels pairing for A/K,  
and let ( - , - -}L:  III(A/L) x III(A'/L) --+ Q / Z  be the Cassels pairing for A/L. 

Write cores for the corestriction map H 1 (L, A) -~ H I (K, A) (for the definition 

see [11] or [15, p. 259]). Furthermore, cores and resA can be defined on the 

cochain level and the transfer formula, 

(6) cores(resA(u) U v) = u U  cores(v), 

holds on the cochain level. 

For details, see [2, III.9 and proof of V.3.8]. 

THEOREM 8: For  a • III(A/K) and a' • IK(A'/L), 

<a, cores(a'))  : <res(a), a%. 

Proof: Let m denote a positive common multiple of [HI(A/K)] and [III(A'/L)]. 
Given a 6 m(A/K)  and a' 6 I]I(A'/L), by following the definition of Cassels 

pairing, we choose 

/]1 e CI(K,  Am2), /9v,1 • ZI(A' , ,Am 2) and /9' • ZI(L, Xm). 

Then pick a 2-cochain c 6 C2(L,L~) such that d(resA(/~l))U /~' = de. 
When applying the map cores to this equality, the transfer formula (6) implies 

d/91 U cores(/9') = dcores(e). For w 6 ML lying over v 6 MK write resw, coresw 

for the local restriction map HI(Kv,  A) --+ HI(Lw, A), the local corestriction 

map H 1 ( Lw , A) --+ H 1 ( Kv , A ) , respectively. 
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Now let cv = (/31,v - ~v,1) U cores(j3')v - cores(c)v and let d~, = (resd(J~l)w 

- resw(~v,1)) t3 /~  -- ew. Then 

(a, cores(a'))K = E invv(cv) and (res(a),a')L = E inv~(d~). 
vCMK WEML 

For w • ML above v • MK, it is obvious that  resA(j31)w = resw(/~l,v), and 

from [12, Lemma 2], ~lvCOres~(/3~) -- cores(Z')~ and ~ w l ,  coresw(ew) = 

cores(e)v. Then the transfer formula (6) implies ~-':~lv coresw(d~) = cv. There- 

fore, from [13, p. 167 Proposition 1 ii)] we have 

E inv~(d~) = Einvv(coresw(dw)) = inv,(Cv). 

Then the theorem follows. | 

COROLLARY 9: We h~tve the isomorphism 

Ker(resA) A III(A/K) ~- Hom(III(A'/K)/ cores(ig(A'/L)), Q/Z) .  

Proof." From the previous theorem, it is obvious. | 

LEMMA 10: We write NIII(A/L) for the kernel of the norm map N: Ig(A/L) -~ 
III(A/L) G. Let resA, : Hi(K,  A') --+ Hi(L,  A') C be the restriction map. Then 

[III(A/K)] = [cores(ylll(A/L))][Ker(resA ,) N III(A'/K)]. 
[N(III(A/L))] 

Proof'. Note that  res o cores = N (see [2, III.9.5(iii)]). Then because 

cores(Nlll(A/L)) = Ker(res) N cores(ln(A/L)), 

we have an exact sequence 

0 --+ cores(glg(A/L)) -+ cores(ig(A/L)) res>N(ig(A/L)) --+ O. 

Then the lemma is immediate from the previous corollary. | 

4. Transgression and Corestriction 

Note that  each element in H 2 (G, A(L)) is represented by a normalized 2-cocycle 

Y • Z2(G, A(L)), that  is, Y(r, 1) = Y(1, T) = 0, for T • G. 

Here we will introduce one definition of the Transgression map 

trans: HI(L,A)  G --+ H2(G,A(L)). For an element x • HI(L ,A)  G, trans(x) 
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is defined by the following condition: there are a cochain f • C I(K, A) and 

a normalized 2-cocycle Y E Z2(G,A(L)) such that f laL,  the restriction of ] 

to GL, is a cocycle in ZI(L, A) representing x, the coboundary df of f is the 

natural image in Z2(K, A) of Y by inflation, and trans(x) • H2(G, A(L)) is the 

element determined by Y, that  is, 

x • H~(L,A) a ( r~ f E C~(K,A) 

y • Z2(G,A(L)) i , f ,  df e Z2(K,A). 

For more detail, see [6, p. 129]. Then for 71,T2 E GK, 

(7) Y ( ~ ,  ~2) = df(vl, T2) = --f(T, T2) + f(T1) + T1 f(~'2), 

where ~ means the coset 7GL. 
From now on we assume that L is a quadratic extension of K. Here is the 

definition of the C o r e s t r i c t i o n  map cores. For a cocyle X E Z I(L, A) define 

cores(X) • ZI(K,A) by 

f + for • GL cores(X) (T) 
X(va)+aX(a- lT)  f O r T • G K - - G L  

with fixed a • GK - GL. See [15, p. 259] or [11, p. 77 and Theorem 3]. 
Let X denote the non-trivial character of G. Write A x for the twist of A by 

X (see [7, §2]). Then there is an isomorphism ¢: A ~ A ~ defined over L such 

that ~(¢) = X(~)¢ = - ¢  for r E GK - GL. 

LEMMA 11: De/ine coresoHl( . ,¢) :  HI(L,A) v ~ HI(K,A )~) by the composi- 
tion of the following two maps: 

HI(L ' A) a H1(',¢)) HI(L ' A× ) core~ HI(K ' Ax). 

Then Ker(cores oH 1(-, ¢)) = Ker(trans). 

Proof: If a cochain f • C 1 (K, A) and a normalized 2-cocycle Y • Z2(G, A(L)) 
satisfy (7), then by direct computation it is obvious that  

is equal to 

(cores oH 1 (., ¢)) (f]cL)(T) 

(1 - T)(¢(f(a))) if T • GL, 
(1 T)(¢(f(a)))--¢(Y(~,~)) i f r • G K - - G L ,  
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with the fixed a E G K - G L. 
When f lcL E Ker(trans), that  is, Y(~,~)  = 0, it is obvious that  f lcL E 

Ker(cores oH 1 (., ¢)). 
Now suppose f laL E Ker(coresoHl( ' ,¢) ) .  Then there is Q • An(L) such 

that ¢(Y(~,~))  = Q - a(Q). So Y(Y,~) = ¢-~(Q) + a(¢-~(Q)) .  Define g E 

C I(G, A(L)) by g(1) = 0 and g(Y) = ¢-1(Q).  Then df = Y = dg. Therefore, 

flGL = ( f  -- g)]GL and d( f  - g) = 0. So f - g • Z I ( K , A ) .  Therefore f]cL = 

( f  - g)la~ • Ker(trans). | 

COROLLARY 12: Suppose that Ig (A /L)  a is finite. Then 

[trans(Ig(A/ L )a)] = [cores(Nig(AX / L ) )]. 

Proof'. Note that  the previous lemma implies 

[trans(KI(A/L)a)] = [(cores oH 1 (., ¢))(]II(A/L)a)].  

Note that  H i (  ., ¢) is injective and H i (  ., ¢ ) ( Ig(A/L)  a) =N Ill(An~L) (see (2) 

of [5]). So the corollary follows. | 

LEMMA 13: Assume IlI(An / K )  is finite. Then 

[II(An /K)I = [trans(IlI(A/L)a)][Ker(JF~)]. 
[(1 - a)III(A/L)] 

Proof: From Lemma 10, we get 

[m(A n /K)]  = [cores(wlg(A n/L))][Ker(resA,,) A Ig(A x ' /K)].  
[g( ig(Ax  /L))] 

Note that  N(gI (An /L ) )  ~ (1 - a)III(A/L) through ~b defined before Lemma 11. 

From the following diagram 

HI(G,  An'(L)) , ~ v H I ( G v L , A n ' ( L v L ) )  

~IO(G,A,(L)) 3; , ~ v  ~io(avL,A,(Lv~)) 

we know that K e r ( ~ )  is isomorphic to the kernel of the upper horizontal map, 

which is equal to Ker(resA,,) A Ig (AX ' /K)  (see diagram (1)). Note that the 

vertical isomorphisms axe induced from the isomorphism defined over L between 

A' and its quadratic twist A x'. Then the lemma is immediate from the previous 

corollary. | 
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