ON TATE-SHAFAREVICH GROUPS OVER GALOIS EXTENSIONS

BY

HOSEOG YU

Korea Institute for Advanced Study 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul, 130-722, Korea e-mail: hsyu@ kias.re.kr

ABSTRACT

Let A be an abelian variety defined over a number field K . Let L be a finite Galois extension of K with Galois group G and let $\mathbb{II}(A/K)$ and $\mathbb{II}(A/L)$ denote, respectively, the Tate-Shafarevich groups of A over K and of A over L . Assuming these groups are finite, we compute $[\Pi(A/L)^G]/[\Pi(A/K)]$ and $[\Pi(A/K)]/[\Lambda(\Pi(A/L))]$, where $[X]$ is the order of a finite abelian group X . Especially, when L is a quadratic extension of K, we derive a simple formula relating $[\text{III}(A/L)], [\text{III}(A/K)],$ and $[\Pi(A^{\chi}/K)]$ where A^{χ} is the twist of A by the non-trivial character χ of G.

1. Introduction

Let L/K be a finite Galois extension of number fields with Galois group G . Write \overline{K} , G_K , M_K , K_v for the algebraic closure of K, $Gal(\overline{K}/K)$, a complete set of places on K, the completion of K at the place $v \in M_K$, respectively. Fix a place $v_L \in M_L$ lying above v for each $v \in M_K$. Denote $Gal(L_w/K_w)$ by G_w for $w \in M_L$.

Let A be an abelian variety defined over K . The conjecture of Birch and Swinnerton-Dyer predicts the leading coefficient of the Taylor expansion for the *L*-function $L(A/K, s)$ attached to A/K at $s = 1$. Denote by $BSD(A/K)$ the conjectured leading coefficient, which is defined by the product of several algebraic invariants including the order of the Tate-Shafarevich group (see [7] or [18]). The constant $BSD(A/K)$ is an isogeny invariant (see [18, Theorem **2.1]).**

Received April 15, 2002 and in revised form May 19, 2003

Assume L is a quadratic extension and A^{χ} denotes the quadratic twist by the non-trivial character χ of G. Milne [7] showed that if the Tate-Shafarevich groups are finite,

$$
BSD(A/L)=BSD(A/K)\cdot BSD(A^{\chi}/K).
$$

Let $\mathbb{II}(A/K)$ and $\mathbb{II}(A/L)$ denote the Tate-Shafarevich groups of A over K and of A over L, respectively. We assume throughout that these groups are finite. We write $[X]$ for the order of a finite abelian group X. Note that the Tate-Shafarevich group is not an isogeny invariant and, in general,

 $[\Pi(A/L)] \neq [\Pi(A/K)][\Pi(A^{\chi}/K)].$

On the difference there are partial results in [5, Corollary 4.6], [7, Corollary to Theorem 3] and [9, Theorem 4.8]. In this paper we derive a simple formula relating the orders of $\mathbb{II}(A/L)$, $\mathbb{II}(A/K)$ and $\mathbb{II}(A^{\chi}/K)$.

MAIN THEOREM: *Assume that the Tate Shafarevich groups are finite. Let A' be the dual variety of A. Then*

$$
\frac{\left[\Pi(A/K)\right][\Pi(A^{\chi}/K)]}{\left[\Pi(A/L)\right]} = \frac{\left[\widetilde{H}^{0}(G, A'(L))\right][H^{1}(G, A(L))]}{\prod_{v \in M_{K}}\left[H^{1}(G_{v_{L}}, A(L_{v_{L}}))\right]},
$$

where v_L is the fixed place of L lying above v for each $v \in M_K$.

Proof: It is obvious from Theorem 6 and Lemma 13. ■

Because $H^1(G_{v_L}, A(L_{v_L})) = 0$ except for a finite number of places, the infinite product $\prod_{v \in M_K} [H^1(G_{v_L}, A(L_{v_L}))]$ is well-defined (see [5, Lemma 2.3]). Note that in the above theorem both sides are a power of 2.

In this study we assume that *L/K* is a finite Galois extension of number fields but we limit *L/K* to a quadratic extension in the latter half of section 4.

2. Tate-Shafarevich groups over Galois extensions

Denote the restriction map in the *Inflation-Restriction* sequence by res_A: $H^1(K, A) \to H^1(L, A)^G$. We have a natural commutative diagram (see [14, p. 296 and p. 335]):

$$
^{(1)}
$$

$$
0 \to H^1(G, A(L)) \xrightarrow{\qquad \qquad} H^1(K, A) \xrightarrow{\text{res}_A} \text{res}_A(H^1(K, A)) \to 0
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
0 \to \bigoplus_{v \in M_K} H^1(G_{v_L}, A(L_{v_L})) \xrightarrow{\qquad \qquad} \bigoplus_{v \in M_K} H^1(K_v, A) \xrightarrow{\qquad \qquad} \bigoplus_{v \in M_K} H^1(L_{v_L}, A),
$$

where v_L is the fixed place of L lying above v for each $v \in M_K$.

Let trans: $H^1(L, A)^G \to H^2(G, A(L))$ be the **Transgression** map (see section 4 for the definition). Denote by $\mathcal I$ the map $Coker(\mathcal F) \to Coker(\mathcal G)$ induced from the above diagram. From [6, Theorem 2] we get Ker(trans) = $res_A(H^1(K, A))$. Therefore,

$$
Ker(\mathcal{H}) = \Pi(A/L)^G \cap res_A(H^1(K, A)) = \Pi(A/L)^G \cap Ker(trans).
$$

Note that $\text{Ker}(\mathcal{G}) = \Pi(A/K)$. Then the *Kernel-Cokernel* sequence of diagram (1) becomes the following sequence:

(2)
$$
0 \longrightarrow \text{Ker}(\mathcal{F}) \longrightarrow \Pi(A/K) \longrightarrow \Pi(A/L)^G \cap \text{Ker}(trans)
$$

$$
\longrightarrow \text{Coker}(\mathcal{F}) \longrightarrow \mathcal{I}(\text{Coker}(\mathcal{F})) \longrightarrow 0.
$$

For a topological abelian group $M,$ let \widehat{M} be the completion of M with respect to the topology defined by the subgroups of finite index. Write *M** for the group of continuous characters of finite order of M, i.e. $M^* = \text{Hom}_{\text{cts}}(M, \mathbf{Q}/\mathbf{Z}).$

THEOREM 1 (Global Duality Theorem): Assume that $\mathbb{II}(A/K)$ is finite. Then there is an *exact sequence:*

$$
0 \to \mathrm{III}(A/K) \to H^1(K,A) \to \bigoplus_{v \in M_K} H^1(K_v,A) \to \widehat{A'(K)}^* \to 0,
$$

where A' is the dual variety of A.

Proof: See [1, Corollary 1], [3, Theorem 1.1] or [8, I.6.14(b)].

THEOREM 2 (Local Duality Theorem): For a place $v \in M_K$ there exists a *bilinear, non-degenerate pairing*

$$
\langle , \rangle : H^0(K_v, A') \times H^1(K_v, A) \longrightarrow \mathbf{Q}/\mathbf{Z}.
$$

Proof: See [16, p. 156-04], [17, p. 289] and [8, I.3.4 and I.3.7].

Here $H^0(K_v, A') = A'(K_v)$ unless v is archimedian, in which case it equals the quotient of $A'(K_v)$ by its identity component (see [17, p. 289]).

LEMMA 3: The *dual* of the *exact* sequence

$$
0 \to H^1(G_{v_L}, A(L_{v_L})) \to H^1(K_v, A) \to H^1(L_{v_L}, A)
$$

is the exact sequence

$$
0 \leftarrow \widehat{H}^0(G_{v_L}, A'(L_{v_L})) \leftarrow H^0(K_v, A') \xleftarrow{N} H^0(L_{v_L}, A'),
$$

where the map N is the norm map (the map π in [16, p. 156-04]).

Proof: It is obvious from the local duality theorem and [16, (12) on p. 156-04]. For the archimedian primes, see [8, I.3.7].

LEMMA 4: Suppose that M is a finite abelian group and that M' is an abelian *group.* Let $f: M \rightarrow M'$ be a *group homomorphism and let* $Hom(f, \cdot)$: $Hom(M', \mathbf{Q}/\mathbf{Z}) \to Hom(M, \mathbf{Q}/\mathbf{Z})$ *be the dual of f. Then [image of Hom(f, .)] = [image of f].*

Proof: It is obvious. ■

LEMMA 5: Let \mathcal{F}'_0 : $\widehat{H}^0(G, A'(L)) \to \prod_{v \in M_K} \widehat{H}^0(G_{v_L}, A'(L_{v_L}))$. Then $[\mathcal{I}(\mathrm{Coker}(\mathcal{F}))] = [\widehat{H}^0(G, A'(L))/\mathrm{Ker}(\mathcal{F}'_0)].$

Proof: From diagram (1) there is the following commutative diagram:

(3)
$$
\bigoplus_{v \in M_K} H^1(G_{v_L}, A(L_{v_L})) \longrightarrow \bigoplus_{v \in M_K} H^1(K_v, A)
$$

surjective
$$
\downarrow \qquad \qquad \downarrow
$$

Coker $(\mathcal{F}) \longrightarrow L$
 \longrightarrow Coker (\mathcal{G}) .

From Lemma 3 and [8, 1.6.14(b)], the dual of a composition map in the above diagram,

(4)
$$
\bigoplus_{v \in M_K} H^1(G_{v_L}, A(L_{v_L})) \to \bigoplus_{v \in M_K} H^1(K_v, A) \to \mathrm{Coker}(\mathcal{G}),
$$

is the composition map

(5)
$$
\prod_{v \in M_K} \widehat{H}^0(G_{v_L}, A'(L_{v_L})) \leftarrow \prod_{v \in M_K} H^0(K_v, A') \leftarrow \widehat{A'(K)}.
$$

Now diagram (3) implies $[\mathcal{I}(\mathrm{Coker}(\mathcal{F}))] = [\mathrm{image\ of\ the\ map\ (4)}]$ and Lemma 4 implies [image of the map (4)] = [image of the map (5)]. From the following natural commutative diagram:

$$
\Pi_{v \in M_K} \widehat{H}^0(G_{v_L}, A'(L_{v_L})) \longleftarrow \Pi_{v \in M_K} H^0(K_v, A')
$$
\n
$$
\mathcal{F}'_0 \uparrow \qquad \qquad \uparrow
$$
\n
$$
\widehat{H}^0(G, A'(L)) \longleftarrow \text{surjective} \qquad \widehat{A'(K)},
$$

[image of the map (5)] = [image of \mathcal{F}'_0] = [$\widehat{H}^0(G, A'(L))/\text{Ker}(\mathcal{F}'_0)$]. Then the lemma follows.

THEOREM 6: Assume that $III(A/L)$ is finite. Then

$$
\frac{\left[\Pi(A/L)^G\right]}{\left[\Pi(A/K)\right]} = \frac{\left[\text{trans}(\Pi(A/L)^G)\right][\text{Ker}(\mathcal{F}'_0)]}{\left[\widehat{H}^0(G, A'(L))\right][H^1(G, A(L))]} \prod_{v \in M_K} [H^1(G_{v_L}, A(L_{v_L}))].
$$

Proof: From the map $\mathcal F$ in diagram (1), we have

$$
\frac{[\text{Coker}(\mathcal{F})]}{[\text{Ker}(\mathcal{F})]} = \frac{[\bigoplus_{v} H^{1}(G_{v_{L}}, A(L_{v_{L}}))]}{[H^{1}(G, A(L))]}.
$$

Then from the sequence (2) and Lemma 5, the theorem is immediate. в

COROLLARY 7 (Generalization of Main Theorem in [5]): *Suppose* that $\widehat{H}^0(G, A'(L)) = H^2(G, A(L)) = 0$. Then

$$
\frac{\left[\Pi(A/L)^G\right]}{\left[\Pi(A/K)\right]} = \frac{\prod_{v \in M_K} [H^1(G_{v_L}, A(L_{v_L}))]}{[H^1(G, A(L))]}
$$

Proof: It is obvious from the previous theorem because $\text{Ker}(\mathcal{F}_0') \subset$ $\widehat{H}^0(G, A'(L))$ and because *trans*($\mathbb{III}(A/L)^G$) $\subset H^2(G, A(L))$.

3. Cassels pairing

When $\mathbb{II}(A/K)$ is finite, there is a canonical pairing

$$
\mathop{\mathrm{III}}\nolimits(A/K) \times \mathop{\mathrm{III}}\nolimits(A'/K) \longrightarrow \mathbf{Q}/\mathbf{Z},
$$

which is non-degenerate. This pairing will be called Cassels pairing. For details, see [4], [17, p. 292] and [8, pp. 96-99]. The following is one definition of Cassels pairing in [8, pp. 96-97], which is called "The Weil pairing definition" in [10, 12.2].

For an abelian group M , let M_m denote the kernel of multiplication by m on M with an integer m. Pick a positive integer m which is a multiple of $[\Pi(A/K)]$. Let $a \in \Pi(A/K)$ and $a' \in \Pi(A'/K)$. Choose elements b and b' of $H^1(K, A_m)$ and $H^1(K, A'_m)$ mapping to a and a' respectively. For each $v \in M_K$, a maps to zero in $H^1(K_v, A)$, and from the diagram

$$
A(K_v) \longrightarrow H^1(K_v, A_m) \longrightarrow H^1(K_v, A)
$$

\n
$$
\downarrow
$$

\n
$$
A(K_v) \longrightarrow H^1(K_v, A_{m^2})
$$

we can lift b_v to an element $b_{v,1} \in H^1(K_v, A_{m^2})$ that is in the image of $A(K_v)$. Let β be a cocycle representing b, and choose a cochain $\beta_1 \in C^1(K, A_{m^2})$ such that $m\beta_1 = \beta$. Choose a cocycle $\beta_{v,1} \in Z^1(K_v, A_{m^2})$ representing $b_{v,1}$, and a cocycle $\beta' \in Z^1(K, A'_m)$ representing *b'*. The coboundary $d\beta_1$ of β_1 takes values in A_m , and $d\beta_1 \cup \beta'$ represents an element of $H^3(K, \overline{K}^{\times}) = 0$. So $d\beta_1 \cup \beta' = d\epsilon$ for some 2-cochain $\epsilon \in C^2(K, \overline{K}^{\times})$. Now $(\beta_{1,\nu} - \beta_{\nu,1}) \cup \beta_{\nu}^{\prime} - \epsilon_{\nu}$ is a 2-cocycle, and we define

$$
\langle a, a' \rangle = \sum_{v \in M_K} \text{inv}_v((\beta_{1,v} - \beta_{v,1}) \cup \beta'_v - \epsilon_v) \in \mathbf{Q}/\mathbf{Z}.
$$

Remember that the cup-product is induced by the Weil pairing

$$
e_m\colon A_m\times A'_m\to \overline{K}^\times,
$$

and inv_v is the canonical map $H^2(K_v, \overline{K_v}^{\times}) \longrightarrow \mathbf{Q/Z}.$

Let $\langle -, -\rangle_K: \Pi(A/K) \times \Pi(A'/K) \to \mathbf{Q}/\mathbf{Z}$ be the Cassels pairing for A/K , and let $\langle -, -\rangle_L: \Pi(A/L) \times \Pi(A'/L) \to \mathbf{Q/Z}$ be the Cassels pairing for A/L .

Write cores for the corestriction map $H^1(L, A) \to H^1(K, A)$ (for the definition see [11] or [15, p. 259]). Furthermore, cores and res_A can be defined on the cochain level and the transfer formula,

(6)
$$
\operatorname{cores}(\operatorname{res}_A(u) \cup v) = u \cup \operatorname{cores}(v),
$$

holds on the cochain level.

For details, see [2, III.9 and proof of V.3.8].

THEOREM 8: For $a \in \Pi(A/K)$ and $a' \in \Pi(A'/L)$,

$$
\langle a, \text{cores}(a') \rangle_K = \langle \text{res}(a), a' \rangle_L.
$$

Proof: Let m denote a positive common multiple of $[\mathbf{I\!I}(A/K)]$ and $[\mathbf{I\!I}(A'/L)]$. Given $a \in \Pi(A/K)$ and $a' \in \Pi(A'/L)$, by following the definition of Cassels pairing, we choose

$$
\beta_1 \in C^1(K, A_{m^2}), \quad \beta_{v,1} \in Z^1(K_v, A_{m^2})
$$
 and $\beta' \in Z^1(L, A'_m)$.

Then pick a 2-cochain $\epsilon \in C^2(L, L_s^{\times})$ such that $d(\text{res}_A(\beta_1)) \cup \beta' = d\epsilon$. When applying the map cores to this equality, the transfer formula (6) implies $d\beta_1 \cup \text{cores}(\beta') = d\text{cores}(\epsilon)$. For $w \in M_L$ lying over $v \in M_K$ write res_w, cores_w for the local restriction map $H^1(K_v, A) \to H^1(L_w, A)$, the local corestriction map $H^1(L_w, A) \to H^1(K_v, A)$, respectively.

Now let $c_v = (\beta_{1,v} - \beta_{v,1}) \cup \text{cores}(\beta')_v - \text{cores}(\epsilon)_v$ and let $d_w = (\text{res}_A(\beta_1)_w)$ $-\operatorname{res}_{w}(\beta_{v,1})) \cup \beta'_{w} - \epsilon_{w}$. Then

$$
\langle a, \text{cores}(a') \rangle_K = \sum_{v \in M_K} \text{inv}_v(c_v) \text{ and } \langle \text{res}(a), a' \rangle_L = \sum_{w \in M_L} \text{inv}_w(d_w).
$$

For $w \in M_L$ above $v \in M_K$, it is obvious that $res_A(\beta_1)_w = res_w(\beta_{1,v})$, and from [12, Lemma 2], $\sum_{w|v} \text{cores}_w(\beta'_w) = \text{cores}(\beta')_v$ and $\sum_{w|v} \text{cores}_w(\epsilon_w) =$ cores(ϵ)_v. Then the transfer formula (6) implies $\sum_{w|v}$ cores_w(d_w) = c_v . Therefore, from $[13, p. 167$ Proposition 1 ii)] we have

$$
\sum_{w|v} \text{inv}_{w}(d_{w}) = \sum_{w|v} \text{inv}_{v}(\text{cores}_{w}(d_{w})) = \text{inv}_{v}(c_{v}).
$$

Then the theorem follows.

COROLLARY 9: We have the isomorphism

$$
\text{Ker}(\text{res}_A) \cap \Pi(A/K) \cong \text{Hom}(\Pi(A'/K)/\operatorname{cores}(\Pi(A'/L)), \mathbf{Q}/\mathbf{Z}).
$$

Proof: From the previous theorem, it is obvious.

LEMMA 10: *We write* $_N \Pi(A/L)$ for the kernel of the norm map $N: \Pi(A/L) \rightarrow$ $\mathrm{III}(A/L)^G$. Let $\mathrm{res}_{A'} : H^1(K, A') \to H^1(L, A')^G$ be the restriction map. Then

$$
\frac{\left[\Pi(A/K)\right]}{\left[N(\Pi(A/L))\right]} = \left[\operatorname{cores}(_{N}\Pi(A/L))\right]\left[\operatorname{Ker}(\operatorname{res}_{A'})\cap\Pi(A'/K)\right].
$$

Proof: Note that res \circ cores = N (see [2, III.9.5(iii)]). Then because

$$
cores(_{N}\mathrm{III}(A/L)) = \mathrm{Ker}(\mathrm{res}) \cap \mathrm{cores}(\mathrm{III}(A/L)),
$$

we have an exact sequence

$$
0 \to \operatorname{cores}(_N\operatorname{III}(A/L)) \to \operatorname{cores}(\operatorname{III}(A/L)) \xrightarrow{\operatorname{res}} N(\operatorname{III}(A/L)) \to 0.
$$

Then the lemma is immediate from the previous corollary. \Box

4. Transgression and Corestriction

Note that each element in $H^2(G, A(L))$ is represented by a normalized 2-cocycle $Y \in \mathbb{Z}^2(G, A(L))$, that is, $Y(\tau, 1) = Y(1, \tau) = 0$, for $\tau \in G$.

Here we will introduce one definition of the **Transgression** map trans: $H^1(L, A)^G \rightarrow H^2(G, A(L))$. For an element $x \in H^1(L, A)^G$, trans(x)

is defined by the following condition: there are a cochain $f \in C^1(K, A)$ and a normalized 2-cocycle $Y \in Z^2(G, A(L))$ such that $f|_{G_L}$, the restriction of f to G_L , is a cocycle in $Z^1(L, A)$ representing x, the coboundary df of f is the natural image in $Z^2(K, A)$ of Y by inflation, and trans(x) $\in H^2(G, A(L))$ is the element determined by Y , that is,

$$
x \in H^{1}(L, A)^{G} \xleftarrow{\text{res}} f \in C^{1}(K, A)
$$

\n
$$
\downarrow
$$

\n
$$
Y \in Z^{2}(G, A(L)) \xrightarrow{\text{inf}} df \in Z^{2}(K, A).
$$

For more detail, see [6, p. 129]. Then for $\tau_1, \tau_2 \in G_K$,

(7)
$$
Y(\tilde{\tau_1}, \tilde{\tau_2}) = df(\tau_1, \tau_2) = -f(\tau_1 \tau_2) + f(\tau_1) + \tau_1 f(\tau_2),
$$

where $\tilde{\tau}$ means the coset τG_L .

From now on we assume that L is a quadratic extension of K . Here is the definition of the Corestriction map cores. For a cocyle $X \in Z^1(L, A)$ define $cores(X) \in Z^1(K, A)$ by

$$
\operatorname{cores}(X)(\tau) = \begin{cases} X(\tau) + \sigma X(\sigma^{-1}\tau\sigma) & \text{for } \tau \in G_L \\ X(\tau\sigma) + \sigma X(\sigma^{-1}\tau) & \text{for } \tau \in G_K - G_L \end{cases}
$$

with fixed $\sigma \in G_K - G_L$. See [15, p. 259] or [11, p. 77 and Theorem 3].

Let χ denote the non-trivial character of G. Write A^{χ} for the twist of A by χ (see [7, §2]). Then there is an isomorphism $\phi: A \to A^{\chi}$ defined over L such that $\widetilde{\tau}(\phi) = \chi(\widetilde{\tau})\phi = -\phi$ for $\tau \in G_K - G_L$.

LEMMA 11: Define cores $\circ H^1(\cdot,\phi)$: $H^1(L,A)^G \to H^1(K,A^{\chi})$ by the composi*tion of the following two* maps:

$$
H^1(L, A)^G \stackrel{H^1(\cdot, \phi)}{\longrightarrow} H^1(L, A^\chi) \stackrel{\text{cores}}{\longrightarrow} H^1(K, A^\chi).
$$

Then $\text{Ker}(\text{cores} \circ H^1(\cdot, \phi)) = \text{Ker}(\text{trans}).$

Proof: If a cochain $f \in C^1(K, A)$ and a normalized 2-cocycle $Y \in Z^2(G, A(L))$ satisfy (7), then by direct computation it is obvious that

$$
(\operatorname{cores} \circ H^1(\cdot,\phi))(f|_{G_L})(\tau)
$$

is equal to

$$
\begin{cases}\n(1-\tau)(\phi(f(\sigma))) & \text{if } \tau \in G_L, \\
(1-\tau)(\phi(f(\sigma))) - \phi(Y(\widetilde{\sigma}, \widetilde{\sigma})) & \text{if } \tau \in G_K - G_L,\n\end{cases}
$$

with the fixed $\sigma \in G_K - G_L$.

When $f|_{G_L} \in \text{Ker}(\text{trans})$, that is, $Y(\tilde{\sigma}, \tilde{\sigma}) = 0$, it is obvious that $f|_{G_L} \in$ Ker(cores $\circ H^1(\cdot,\phi)$).

Now suppose $f|_{G_L} \in \text{Ker}(\text{cores} \circ H^1(\cdot, \phi))$. Then there is $Q \in A^{\chi}(L)$ such that $\phi(Y(\tilde{\sigma},\tilde{\sigma})) = Q - \sigma(Q)$. So $Y(\tilde{\sigma},\tilde{\sigma}) = \phi^{-1}(Q) + \sigma(\phi^{-1}(Q))$. Define $g \in$ $C^1(G, A(L))$ by $g(1) = 0$ and $g(\tilde{\sigma}) = \phi^{-1}(Q)$. Then $df = Y = dg$. Therefore, $f|_{G_L} = (f-g)|_{G_L}$ and $d(f-g) = 0$. So $f-g \in Z^1(K,A)$. Therefore, $f|_{G_L} =$ $(f - g)|_{G_L} \in \text{Ker}(\text{trans}).$

COROLLARY 12: Suppose that $\mathbb{II}(A/L)^G$ is finite. Then

$$
[\text{trans}(\Pi(A/L)^G)] = [\text{cores}(_N \Pi(A^{\chi}/L))].
$$

Proof'. Note that the previous lemma implies

$$
[\text{trans}(\mathbf{I\!I}(A/L)^G)] = [(\text{cores} \circ H^1(\cdot, \phi))(\mathbf{I\!I}(A/L)^G)].
$$

Note that $H^1(\cdot, \phi)$ is injective and $H^1(\cdot, \phi)(\mathbb{II}(A/L)^G) =_N \mathbb{II}(A^{\chi}/L)$ (see (2) of [5]). So the corollary follows. |

LEMMA 13: Assume $III(A^{\chi}/K)$ is finite. Then

$$
\frac{\left[\Pi(A^{\chi}/K)\right]}{\left[(1-\sigma)\Pi(A/L)\right]} = \left[\text{trans}(\Pi(A/L)^G)\right][\text{Ker}(\mathcal{F}'_0)].
$$

Proof: From Lemma 10, we get

$$
\frac{[\Pi(A^{\chi}/K)]}{[N(\Pi(A^{\chi}/L))]} = [\text{cores}(_{N}\Pi(A^{\chi}/L))][\text{Ker}(\text{res}_{A^{\chi'}}) \cap \Pi(A^{\chi'}/K)].
$$

Note that $N(\Pi(A^{\chi}/L)) \cong (1 - \sigma)\Pi(A/L)$ through ϕ defined before Lemma 11. From the following diagram

$$
H^1(G, A^{\chi'}(L)) \longrightarrow \bigoplus_{v} H^1(G_{v_L}, A^{\chi'}(L_{v_L}))
$$

\n
$$
\cong \bigwedge^*
$$

\n
$$
\widehat{H}^0(G, A'(L)) \xrightarrow{\mathcal{F}_0'} \bigoplus_{v} \widehat{H}^0(G_{v_L}, A'(L_{v_L}))
$$

we know that $\text{Ker}(\mathcal{F}_0')$ is isomorphic to the kernel of the upper horizontal map, which is equal to $\text{Ker}(\text{res}_{Ax'}) \cap \Pi(A^{x'}/K)$ (see diagram (1)). Note that the vertical isomorphisms axe induced from the isomorphism defined over L between A' and its quadratic twist $A^{\chi'}$. Then the lemma is immediate from the previous $\qquad \qquad \blacksquare$

References

- [1] M. I. Bashmakov, *The cohomology of abelian varieties over a number field,* Russian Mathematical Surveys 27 (1972), no. 6, 25-70.
- [2] K. S. Brown, *Cohomology of Groups,* Graduate Texts in Mathematics 87, Springer-Verlag, Berlin, 1982.
- [3] J. W. S. Cassels, *Arithmetic on curves of genus 1. VII. The dual exact sequence*, Journal für die reine und angewandte Mathematik 216 (1964), 150-158.
- [4] J. W. S. Cassels, *Arithmetic on curves of genus 1. VIII.* On the conjectures of *Birch and Swinnerton-Dyer, Journal für die reine und angewandte Mathematik* 217 (1965), 180-189.
- [5] C. D. Gonzalez-Avil6s, *On Tate-Shafarevich groups of abelian varieties,* Proceedings of the American Mathematical Society 128 (2000), 953-961.
- [6] G. Hochschild and J-P. Serre, *Cohomology of Group Extension,* Transactions of the American Mathematical Society 74 (1953), 110-134.
- [7] J. S. Milne, *On the arithmetic ofabelian varieties,* Inventiones Mathematicae 17 (1972), 177-190.
- [8] J. S. Milne, *Arithmetic Duality* Theorems, Perspectives in Mathematics, Vol. 1, Academic Press, New York, 1986.
- [9] H. Park, *Idempotent relations and the conjecture of Birch and Swinnerton-Dyer,* Algebra and Topology 1990 (Taejon, 1990), Korea Adv. Inst. Sci. Tech, Taejon, 1990, pp. 97-125.
- [10] B. Poonen and M. Stoll, *The Cassels-Tate* pairing *on polarized abelian varieties,* Annals of Mathematics 150 (1999), 1109-1149.
- [11] C. Riehm, *The corestriction of* algebraic *structures,* Inventiones Mathematicae 11 (1970), 73-98.
- [12] J. Shapiro, Transfer *in Galois cohomology commutes with transfer in the Milnor ring,* Journal of Pure and Applied Algebra 23 (1982), 97-108.
- [13] J. P. Serre, *Local Fields,* Graduate Texts in Mathematics 67, Springer-Verlag, Berlin, 1979.
- [14] J. Silverman, *The Arithmetic of Elliptic Curves,* Graduate Texts in Mathematics 106, Springer-Verlag, Berlin, 1986.
- [15] J. Tate, *Relations between K2 and Galois cohomology,* Inventiones Mathematicae 36 (1976), 257-274.
- [16] J. Tate, *WC-group over p-adic fields,* S6minaire Bourbaki, 1957-58, expos6 156.
- [17] J. Tate, *Duality theorem in Galois cohomology over number fields,* Proceedings of the International Congress of Mathematicians, Stockholm, 1962, pp. 288-295.
- [18] J. Tate, *On the conjectures of Birch and Swinnerton-Dyer and a geometric analog,* Séminaire Bourbaki, 1965-66, exposé 306.