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ABSTRACT

Let A be an abelian variety defined over a number field K. Let L be
a finite Galois extension of K with Galois group G and let II{A/K)
and I(A/L) denote, respectively, the Tate-Shafarevich groups of A over
K and of A over L. Assuming these groups are finite, we compute
[I{A/L)F)/[M(A/K)] and [I{A/K)]/[N(H(A/L))], where [X] is the or-
der of a finite abelian group X. Especially, when L is a quadratic exten-
sion of K, we derive a simple formula relating [II(A/L)], [I(A/K)], and
[M(AX/K)] where AX is the twist of A by the non-trivial character x of
G.

1. Introduction

Let L/K be a finite Galois extension of number fields with Galois group G.
Write K, G, My, K, for the algebraic closure of K, Gal(K/K), a complete
set of places on K, the completion of K at the place v € Mg, respectively. Fix
a place vi € My, lying above v for each v € Mk . Denote Gal(L,,/K,,) by G,

for w € My,

Let A be an abelian variety defined over K. The conjecture of Birch and
Swinnerton-Dyer predicts the leading coefficient of the Taylor expansion for
the L-function L(A/K,s) attached to A/K at s = 1. Denote by BSD(A/K)
the conjectured leading coefficient, which is defined by the product of several
algebraic invariants including the order of the Tate-Shafarevich group (see [7]
or [18]). The constant BSD(A/K) is an isogeny invariant (see [18, Theorem
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Assume L is a quadratic extension and AX denotes the quadratic twist by
the non-trivial character x of G. Milne [7] showed that if the Tate—Shafarevich
groups are finite,

BSD(A/L) = BSD(A/K) - BSD(AX/K).

Let M(A/K) and TI(A/L) denote the Tate-Shafarevich groups of A over K
and of A over L, respectively. We assume throughout that these groups are
finite. We write [X] for the order of a finite abelian group X. Note that the
Tate-Shafarevich group is not an isogeny invariant and, in general,

[MI(A/L)] # [MI(A/K)]II(A*/ K)].

On the difference there are partial results in [5, Corollary 4.6], [7, Corollary to
Theorem 3] and [9, Theorem 4.8]. In this paper we derive a simple formula
relating the orders of M(A/L), II(A/K) and MI(AX/K).

MAIN THEOREM: Assume that the Tate-Shafarevich groups are finite. Let A’
be the dual variety of A. Then
[M(A/F)I(AY/K)) _ [H(G, A'(L)IH(G, AL))]
[II(A/L)] Hoensy H (Gop s AL, ))]

where vy, is the fixed place of L lying above v for each v € M.

Proof: It is obvious from Theorem 6 and Lemma 13. [ |

Because HY(G,,, A(L,,)) = 0 except for a finite number of places, the infinite
product [T, [H'(Gop, A(Ly, )] is well-defined (see [5, Lemma 2.3]). Note
that in the above theorem both sides are a power of 2.

In this study we assume that L/ K is a finite Galois extension of number fields
but we limit L/K to a quadratic extension in the latter half of section 4.

2. Tate—Shafarevich groups over Galois extensions

Denote the restriction map in the Inflation-Restriction sequence by resg:
HY(K,A) - HY(L,A)°. We have a natural commutative diagram (see [14,
p. 296 and p. 335)):
(1)

0— HYG, A(L)) HU(K,A) —=2 > res s (H (K, A))— 0

‘ g g

O_) @ HI(GUL’A(L’UL))————) @ HI(K’U,A)_> @ HI(L'UL’A)a
vEMgK vEMyK vEMyK
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where vy, is the fixed place of L lying above v for each v € M.

Let trans: H'(L, A)¢ — H?(G, A(L)) be the Transgression map (see sec-
tion 4 for the definition). Denote by Z the map Coker(F) — Coker(G) in-
duced from the above diagram. From [6, Theorem 2] we get Ker(trans) =
resa(H'(K, A)). Therefore,

Ker(H) = M(A/L)° Nresa(H(K, A)) = M(A/L)® N Ker(trans).

Note that Ker(G) = M(A/K). Then the Kernel-Cokernel sequence of dia-
gram (1) becomes the following sequence:

0 — Ker(F) — I(A/K) — I(A/L)€ N Ker(trans)

@) — Coker(F) — Z(Coker(F)) — 0.

For a topological abelian group M, let M be the completion of M with respect
to the topology defined by the subgroups of finite index. Write M* for the group
of continuous characters of finite order of M, i.e. M* = Hom,(M,Q/Z).

THEOREM 1 (Global Duality Theorem): Assume that I(A/K) is finite. Then
there is an exact sequence:

0 M(A/K) - H'(K,A) » @) H'(K, A) - F(E) =0,

vEMg

where A’ is the dual variety of A.
Proof: See [1, Corollary 1], [3, Theorem 1.1] or [8, 1.6.14(b)]. [ |

THEOREM 2 (Local Duality Theorem): For a place v € My there exists a
bilinear, non-degenerate pairing

(,): HY (K, A') x H'(K,,A) — Q/Z.
Proof: See [16, p. 156-04], [17, p. 289] and [8, 1.3.4 and 1.3.7]. |

Here H°(K,, A') = A'(K,) unless v is archimedian, in which case it equals the
quotient of A’(K,) by its identity component (see [17, p. 289]).

LEMMA 3: The dual of the exact sequence
0= HY(G,,,A(Ly,)) = HY (K,, A) » HY(L,,, A)
is the exact sequence

— 2 ULy ! v A ,’07 — UL 9
0« BY(Gy,, A'(Ly,)) + HO(K,y, A')—HO(L,, , A")
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where the map N is the norm map (the map tr in [16, p. 156-04]).

Proof: It is obvious from the local duality theorem and [16, (12) on p. 156-04].
For the archimedian primes, see [8, 1.3.7]. 1

LEMMA 4: Suppose that M is a finite abelian group and that M' is an abelian
group. Let f: M — M’ be a group homomorphism and let Hom(f,-):
Hom(M’,Q/Z) — Hom(M, Q/Z) be the dual of f. Then [image of Hom(f,-)]
= [image of f].

Proof: It is obvious. |
LEMMA 5: Let Fy: HO(G, A'(L)) = [Tyerr, H(Goyy A'(Lyy)). Then

[Z(Coker(F))] = [H*(G, A'(L))/ Ker(F})).

Proof: From diagram (1) there is the following commutative diagram:

(3) @UEMK Hl(GULvA(LUL)) _>®v€MK Hl(KmA)
surjectivel l
Coker(F) L Coker(G).
From Lemma 3 and [8, 1.6.14(b)], the dual of a composition map in the above
diagram,
(4) P H'(Gu,,ALy,)) » @ H'(K,, A) — Coker(G),

vEMgk vEMgk

is the composition map

(5) I 8%Gu., 4Lu) « [ H(KwA)  Z(EK).
vEMK vEMK

Now diagram (3) implies [Z(Coker(F))] = [image of the map (4)] and Lemma 4
implies [image of the map (4)] = [image of the map (5)]. From the following
natural commutative diagram:

HUEMK ﬁO(GUL’AI(LvL)) -~ HUEMK HO(KvaA,)

i |

surjective —

H(G, A'(L)) A'(K),
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[image of the map (5)] = [image of F{} = [fIO(G,A'(L))/Ker(fé)]. Then the
lemma follows. 1
THEOREM 6: Assume that I(A/L) is finite. Then

(m(A/L)%) _ [trans(II(A/L)¢ N[Ker(F))]
[MI(A/K)] — [BY(G, A(L)[HYG, A(L)))

II [H Gy, AL

vEMK
Proof: From the map F in diagram (1), we have

[Coker(F)] _ [®, H* (Guy, A(Ly,))
[Ker(F)] [H'(G, A(L))]

Then from the sequence (2) and Lemma 5, the theorem is immediate. ]

COROLLARY 7 (Generalization of Main Theorem in [5]): Suppose that
HO(G, A'(L)) = H*(G, A(L)) = 0. Then

[0(4/D)°) _ Hoense [H (Gosr AL, )]

[TI(A/K)) [HY(G, A(L))] '

Proof: It is obvious from the previous theorem because Ker(F}) C
H%(G, A'(L)) and because trans(I(A/L)%) c H%(G, A(L)).

3. Cassels pairing
When II(A/K) is finite, there is a canonical pairing
I(A/K) x I(A'/K) — Q/Z,

which is non-degenerate. This pairing will be called Cassels pairing. For detaiis,
see [4], [17, p. 292] and [8, pp. 96-99]. The following is one definition of Cassels
pairing in (8, pp. 96-97], which is called “The Weil pairing definition” in [10,
12.2].

For an abelian group M, let M,, denote the kernel of multiplication by m on
M with an integer m. Pick a positive integer m which is a multiple of [II(A4/K)].
Let a € II(A/K) and o' € MM(A’/K). Choose elements b and b’ of H'(K, A,,)
and H'(K, A],) mapping to a and a’ respectively. For each v € M, a maps to
zero in H'(K,, A), and from the diagram

A(K,) — HY(K,, Ap) — H'(K,, A)

| |

A(A ) _—_)Hl(KmAmZ)
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we can lift b, to an element b, € H* (K, Ap,2) that is in the image of A(K,).
Let 8 be a cocycle representing b, and choose a cochain 8; € C1(K, A,,2) such
that mf; = B. Choose a cocycle 8,1 € Z'(Ky,, Apz2) representing b, 1, and a
cocycle 8 € Z'(K, A!,) representing b'. The coboundary dp; of 3, takes values
in A, and dB; U B’ represents an element of H3(K, K ) = 0. So dB, UB' = de
for some 2-cochain € € C2(K,K ). Now (81,4 — Bv1) U B, — €, is a 2-cocycle,
and we define

<(1,a,’> = Z invv((ﬁl,v _ﬁv,l) Uﬁ:_, ”‘Cu) [S Q/Z

vEMEK

Remember that the cup-product is induced by the Weil pairing
em: Am X AL, K,

and inv, is the canonical map Hz(K,,,Ix—’vx)l)Q/Z.
Let (—,—)x: (A/K) x M(A'/K) — Q/Z be the Cassels pairing for A/K,
and let (—,~)p: M(A/L) x TI(A’/L) — Q/Z be the Cassels pairing for A/L.
Write cores for the corestriction map H'(L, A) — H!(K, A) (for the definition
see [11] or [15, p. 259]). Furthermore, cores and res4 can be defined on the
cochain level and the transfer formula,

(6) cores(res4(u) Uv) = u U cores(v),
holds on the cochain level.

For details, see [2, II1.9 and proof of V.3.8].
THEOREM 8: Fora € I(A/K) and o’ € TM(A'/L),

(a,cores(a’)) k = (res(a),a’) .

Proof: Let m denote a positive common multiple of [II(A/K)] and [OI(A’/L)].
Given a € MI(A/K) and o’ € II(A'/L), by following the definition of Cassels
pairing, we choose

Br € CYK, Ap2), Bui € ZY(K,,Am2) and B’ € Z'(L,Al).

Then pick a 2-cochain € € C?*(L,L}) such that d(ress(f1)) U S = de.
When applying the map cores to this equality, the transfer formula (6) implies
df; U cores(B') = dcores(e). For w € My, lying over v € M write res,,, cores,,
for the local restriction map H'(K,, A) — H'(L,, A), the local corestriction
map H'(L,,A) - H*(K,, A), respectively.
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Now let ¢, = (81,0 — Buv,1) U cores(B'), — cores(e), and let dy, = (resa(B1)w
—resy(By1)) U B, — €. Then

{a, cores(a')) x = Z invy(c,) and (res(a),a’), = Z invy,(dy)-
vEMg weML

For w € M above v € My, it is obvious that resa(81), = resy,(f1,y), and
from [12, Lemma 2], }°,,, coresy(f;,) = cores(f'), and 2wy Coresy (€w) =

cores(€),. Then the transfer formula (6) implies zw{ o Coresy, (dy) = ¢,. There-

fore, from [13, p. 167 Proposition 1 ii)] we have

> invy(dw) = ) inv, (coresy(dy)) = invy(c,).

wlv wlv

Then the theorem follows. [ |

COROLLARY 9: We have the isomorphism

Ker(res4) NII{A/K) = Hom(II[(A'/K)/ cores(l(A' /L)), Q/Z).
Proof: From the previous theorem, it is obvious. ]
LEMMA 10: We write yIII(A/L) for the kernel of the norm map N: II(A/L) -
M(A/L)C. Let resa : HY(K,A') — H'(L, A")C be the restriction map. Then

[[I(A/K)]
[NI(A/L))]
Proof: Note that resocores = N (see [2, [11.9.5(iii)]). Then because

= [cores(nyIII(A/L))][Ker(res 4 ) NTI(A'/K)].

cores(nyII(A/L)) = Ker(res) N cores(II(A/L)),
we have an exact sequence
0 — cores(nII(A/L)) — cores(I(A/L))~>N(II(A/L)) = 0.

Then the lemma is immediate from the previous corollary. ]

4. Transgression and Corestriction

Note that each element in H2(G, A(L)) is represented by a normalized 2-cocycle
Y € Z*(G, A(L)), that is, Y(r,1) = Y(1,7) = 0, for T € G.

Here we will introduce one definition of the Transgression map
trans: H'(L,A)° — H?*(G,A(L)). For an element x € H'(L, A)®, trans(z)
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is defined by the following condition: there are a cochain f € C'(K,A) and
a normalized 2-cocycle Y € Z2?(G, A(L)) such that f|g,, the restriction of f
to G, is a cocycle in Z1(L, A) representing x, the coboundary df of f is the
natural image in Z2(K, A) of Y by inflation, and trans(z) € H*(G, A(L)) is the
element determined by Y, that is,

z € HY(L,A)¢ <—— f € C{(K, A)

Y € Z2(G, A(L)) 2> df € 72(K, A).
For more detail, see [6, p. 129]. Then for 7,7 € Gk,

(M) Y(71,72) = df(n, ) = —f(nm) + f(n) + 1 f(r),

where T means the coset 7Gp,.

From now on we assume that L is a quadratic extension of K. Here is the
definition of the Corestriction map cores. For a cocyle X € Z!(L, A) define
cores(X) € Z'(K, A) by

_[X(r)+0X(c7 7r0) forr ey
cores(X)(r) = {X(TO') +o0X(o7lr) forTte Gk -Gy

with fixed 0 € Gk — G. See [15, p. 259] or [11, p. 77 and Theorem 3].

Let x denote the non-trivial character of G. Write AX for the twist of A by
x (see [7, §2]). Then there is an isomorphism ¢: A — AX defined over L such
that 7(¢) = x(T)¢ = —d for r € G — Gy

LEMMA 11: Define coresoH' (-, ¢): H'(L, A)° — H'(K, AX) by the composi-
tion of the following two maps:

VL, A)C 0D g ax) = gk, 4x),

Then Ker(coresoH(-, $)) = Ker{trans).

Proof: 1f a cochain f € C1(K, A) and a normalized 2-cocycle Y € Z%(G, A(L))
satisfy (7), then by direct computation it is obvious that

(coresoH' (-, 8))(fla, )(7)
is equal to

{ (1 = 1)((f(a))) if r€ Gy,
(1 -7)(¢(f(0))) - ¢(Y(7,7)) if € Gk -Gy,
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with the fixed ¢ € G — Gp.

When flg, € Ker(trans), that is, Y(¢,5) = 0, it is obvious that flg, €
Ker(coresoH' (-, 9)).

Now suppose f|g, € Ker(coresoH'(:,¢)). Then there is Q € AX(L) such
that ¢(Y (5,5)) = Q — 0(Q). So Y(5,0) = ¢ HQ) + 0(¢7*(Q)). Define g €
CY(G, A(L)) by g(1) = 0 and ¢g(5) = ¢~(Q). Then df =Y = dg. Therefore,
flo, = (f = 9)lc, and d(f — g) = 0. So f — g € Z(K, A). Therefore, flg, =
(f — 9)lc, € Ker(trans). [

COROLLARY 12: Suppose that I(A/L)C is finite. Then
[trans(TI(A/L)%)] = [cores(nyTI(AX /L))].
Proof: Note that the previous lemma implies
[trans(I(A/L))] = [(cores o' (-, ¢)) (W(A/L))]-
Note that H(-,¢) is injective and H'(-,¢)(T(A/L)¢) =n IM(AX/L) (see (2)
of [5]). So the corollary follows. |
LEMMA 13: Assume II(AX/K) is finite. Then
[W(AX/K)]
(1 - o)I(A/L)}
Proof: From Lemma 10, we get
[II(A*/K)]
[N (IL(Ax/L))]
Note that N(II(AX/L)) = (1 — 0)II(A/L) through ¢ defined before Lemma 11.
From the following diagram

= [trans(I(A/L)%)][Ker(F))-

= [cores(yTI(AX/L))][Ker(res 4x') N T(AX'/K)].

HY(G, A (L)) —> @, H* (G, , AX'(Lv.))

1

789G, 4(L)) —— @, H(G,, , A'(Ly,))

we know that Ker(JF}) is isomorphic to the kernel of the upper horizontal map,
which is equal to Ker(resax/) N II(AX'/K) (see diagram (1)). Note that the
vertical isomorphisms are induced from the isomorphism defined over L between
A’ and its quadratic twist AX'. Then the lemma is immediate from the previous
corollary. |
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